>
您好,欢迎来到奕枫仪器 水环境仪器站点!

水色遥感专题系列介绍(一)

发布人: 来源: 发布时间:2021-12-19 16:51:14
地球表面开放水体约占全球面积的74%,其中海洋面积最大,约占95%。水也是研究地表物质能量交换的重要载体和关键因子。
浩瀚的海洋中蕴含着包括矿产资源和生物资源在内的数目庞大的资源储备。水色遥感可以通过卫星监测提供海面附近的生物分布情况、温度状况及其他一些基本信息,对于我们进一步的了解海洋拥有着非常关键的作用。研究表明,浮游生物能够有效的吸收二氧化碳,并且转化为有机沉淀,从而减少温室气体的含量,降低地球温度,从而改善一个区域的气候。因此,通过水色遥感技术获得的叶绿素的数据的分析,可以得到叶绿素的分布情况,即浮游生物的生存状况,对于海洋初级生产力有一个大致的估算,从而能够更加合理的开发和利用海洋资源,预测未来的气候变化。
在海洋水色遥感领域中,为了研究方便,通常将海洋水体分为Ⅰ类水体和Ⅱ类水体。Ⅰ 类水体的光学性质主要由浮游植物及其伴生物决定的,即大洋开阔水体。在传统算法中,推测结果对于第一类水体基本上是适用的,而对于第二类水体,由于影响因素复杂,并且存在着浮游生物对于无机悬浮物和有机黄色物质的沉淀和分解作用,难以预测一个区域的未来发展。我国科学家根据多年对于东海、南黄海的实测海洋生产力与环境数据的分析,基于P-E(生产力与光照强度)曲线,利用叶绿素浓度、海水透明度和光合作用有效辐射率等数据,建立了适合我国海区特点的初期生产力遥感模型,相比于国外的初级生产力模型,能够更好地与我国海域实际情况相契合。
FastOcean APD 藻类荧光剖面测量系统(左)
LabSTAF 单周转活性叶绿素荧光计(右))
 
Ⅱ 类水体的光学性质主要由浮游植物、悬浮物质和可溶性有机物决定,既海岸带水体和受陆源排放物质影响十分强烈的河口水体。
Ⅱ 类水体位于与人类关系最亲切、受人类活动影响最强烈的海域,其水色因子—悬浮泥沙、叶绿素和黄色物质等是影响海水水质的关键因素,也是影响海水光学特性的重要参数。其中,悬浮泥沙含量的多少直接影响水体中光照分布、水体透明度、浑浊度等光学性质,进而影响水生生态过程。悬浮泥沙也会影响河口海岸带冲淤变化过程。悬浮泥沙的运移特征是沿海河口形态和演变规律的核心问题。
了解和掌握河口悬浮泥沙的来源,可以分析河口演变的动力特征,这是对于我们日常生活非常重要的问题。并且通过预测泥沙的趋势,可以避免灾害,同时帮助人们更加合理的开发海洋土地资源。
遥感数据本身具有周期短、空间分辨率高和覆盖范围广的优势。随着国内外多种海洋水色传感器的发射和多次海上实测活动的进行,获取的大量海洋遥感影像数据和海洋同步实测数据为悬浮泥沙浓度反演提供了可能。基于遥感数据的海洋悬浮泥沙监测能够反映不同时空尺度的浓度动态变化。因此,利用常规遥感数据、海洋水色卫星数据、高光谱数据和实测数据的悬浮泥沙浓度反演引起了众多学者的普遍关注,对于悬浮泥沙浓度定量反演方法的研究成为海洋学领域研究的热点问题。
 
实验表明不同含沙量水体光谱曲线存在较大差异。悬浮泥沙浓度较小时,遥感反射率光谱仅存在一个位于黄光波段(560~590 μm)的峰值。当悬沙浓度较高时,遥感反射率光谱出现两峰值,位于黄光波段(560~590 μm)的主峰和位于近红外波段(760~1100 um)的次主峰。且随着悬沙浓度的增加,光谱曲线会出现“红移现象”。因此,对于反射率光谱曲线深入的研究,对于模型反演波段选择和波段之间的组合关系的选取具有重要意义。
充分利用多种遥感数据源,多源遥感数据分析和实地同步实验数据相结合,对悬浮泥沙定量化提取模式和定量估算模型进行研究,可以综合多元数据的空间信息和波谱信息,提高模型反演的精度。
 
由于海洋是复杂多变的,对于海洋表面情况的研究有利于我们较为全面而快捷的对于一些突发性状况进行观测及反应,增加了人们应对海洋灾害的应变能力。
例如赤潮的发生是由于水体的富营养化导致了浮游生物的大量的繁殖和聚集。赤潮既可能会发生在深海,也可能会发生在海口等其他一些海域,对于人类的生产和生活也有着很大的影响。对于赤潮的研究,虽然不是对于海洋资源的开发问题,但是涉及到海洋灾害的预防,可以在经济生产中帮助我们趋利避害,更好的适应海边生活。而且大量的浮游生物的生长和腐败会导致水体缺氧,还会改变海洋系统的生态平衡,降低海水周边的环境质量。
 
水色遥感在赤潮的预测中发挥了重要的作用。以丹麦细柱藻为例,赤潮水体的反射光谱存在着两个明显的特征,一是在红光的680纳米左右有明显的反射峰,二是在509nm,616nm,668nm波段有不同于正常水体的变化率。近岸海水在红光和蓝光波段上,无赤潮的海水是平直的或者是向上凸的,有赤潮的海水在此波段上是向下凹陷的。因此可以通过水色遥感来监测赤潮的发生。
 
鱼群经常沿锋面和特殊的温度和生物量的等值线运动,所以可以通过水色遥感技术实时监测鱼群的运动,并且可以对于鱼情进行预测。同时渔业部门可以通过卫星提供海域的海温与叶绿素等信息,掌握相应的渔场环境状态,采取相对应的对策,提高人工鱼场的产量。
 
利用海洋水色图像,可以直接观测气候及其他大尺度气候问题对于叶绿素分布的影响,进而能够通过叶绿素的改变来预测海洋环境的改变。并且可以进行海洋上层热平衡计算。浮游生物具有吸收和固定二氧化碳的作用,而在整个水体中,浮游生物的数量是惊人的。可以通过对于水色遥感技术的研究,预测海洋中浮游生物的数量,从而研究生物对于温室气体的吸收能力,并且通过浮游生物对于周边环境的改善,对于地表温度的降低作用来预测未来的气候发展。
AlgaeROW藻华传感器 Fluo-Imager™ 三维光谱荧光指纹分析仪 UniLux 藻类荧光计 nanoFlu 微型荧光计 UV203紫外线辐射计 UV203/3水下紫外线辐射计 Q203量子PAR辐射计 PM203光功率计 L203 照度计 IMO-NTU浊度计 IMO-NTU-LPT浊度计 μSpec原位海洋光谱仪系列 SR9910-V7光谱仪 SC6-LPT后向散射仪 SC3/SC6后向散射仪 PAR光合有效辐射传感器 MS9多光谱传感器 MS9-LPT自容式多光谱传感器 DALEC走航式高光谱辐射测量系统 FastBallast压载水合规监测系统 水中二氧化碳传感器 V-Lux 多参数荧光计 enviroFlu-HC 水中油多环芳香烃(PAHs) 荧光计 NICO地表水硝酸盐测量仪 OPUS UV地表水硝酸盐及亚硝酸盐测量仪 地表水硝酸盐测量 LabSTAF 单周转活性叶绿素荧光计 110型水位水温计 120-LTC水位水质计 575 MP1读数表式水位水质计 575-LTC读数表式水位水质计 S200在线数字控制器 S200余氯&pH分析仪 S200溶解臭氧分析仪 S200二氧化氯分析仪 S200 TUr 低量程浊度计 BABYNOX固定式采样器 AQUITOP壁挂式采样器 AQUINOX固定式采样器 AQUIBOX便携式采样器 AQUIFROID便携式制冷采样器 TRIPOD水质多参数传感器 Skidsens污垢监测仪 PONSEL溢流传感器 PHEHT pH & ORP传感器 OPTOD荧光法溶氧传感器 NTU浊度传感器 MES5污泥浓度与污泥界面仪 EHAN氧化还原电位ORP传感器 CTZN感应式电导率传感器 C4E四电极电导率传感器 APW污泥界面仪 STAC CL高氯分析仪 PRIM LIGHT & ADVANCED紧凑型可见光光度计 UVILINE 9300/9600 水质分光光度计 UVILINE 910/940 水质分光光度计 STAC 水质在线预警系统 PASTEL UV便携式水质有机物分析仪 ODEON手持式多参数水质分析仪 TOX mini便携式生物毒性分析仪 【安装作业】太湖漫山站水面辐射自动云台测量系统 UV254 SAC254 SUVA在废水监测中应用 内部比较WISP-3和其他的辐射计(TriOS Ramses, ASD FieldSpec, and TACCS) WALRUS高光谱浮标式辐射计测量方法 水体光学特性测量在环境领域的应用 2009-2011年度hydroscat后向散射发表文献节选 Hydroscat6用于我国东海和黄海总悬浮颗粒物反演 Hydroscat-6用于我国东海和黄海固有光学特性研究 HydroScat 后向散射仪文献目录 HydroRad水下光谱仪已发表文献 归一化离水辐射率和遥感反射率的测量 光散射、光吸收和光衰减 一类水体与二类水体 水体表观光学特性AOP与固有光学特性IOP 辐照度(Irradiance)和辐亮度(Radiance) 浊度基本概念及浊度传感器原理 溢油监测中各种油类基础概念 英国CTG公司藻类初级生产力及水质传感器应用 地下水及地下水污染 英国地质研究所使用UviLux荧光计评估地下水污染及风险因素 UviLux在利菲河下游河口检测碳氢化合物含量 船舶废气清洁系统EGC(Exhaust Gas Cleaning) 海洋初级生产力,海洋原始生产力 石油污染与持久性有机污染物 POPs 持久性有机污染物 Persistent Organic Pollutants,POPs) FLS-A 荧光激光雷达溢油监测文献 国外WQM长期定点观测应用 CYCLE-PO4测量数据图形 地下水污染防治难在何处 水色遥感专题系列介绍(一) 【应用】无人船与海洋监测 【应用】无人船与海洋监测 【介绍】剖面法测量水下高光谱 【产品】船载移动式水面之上法遥感反射率测量设备介绍 【科普】测电导率在水环境监测中的重要作用 【资讯】水质监测如何促进可持续发展和实现"水产养殖4.0" 【实验】OPUS 硝酸盐/亚硝酸盐测量应用案例 【科普】叶绿素荧光传感器原理 【实验】海洋酸化和太阳辐射强度变化对浮游植物影响 【实验】摩洛哥农业区地下水理化参数分析及水质影响因素 第四届全国海洋光学高峰论坛于杭州顺利召开 防汛减灾测报“利器” 对抗暴雨袭击 第12届中国水文水资源技术与装备展(奕枫)精彩回顾 第12届中国水文水资源技术与装备展(奕枫)精彩回顾 PSICAM点光源积分腔吸收计 QFT-ICAM定量过滤技术积分腔吸收计 【安装作业】太湖漫山站水面辐射自动云台测量系统 中国海洋湖沼学会藻类学分会换届大会暨第二十次学术讨论 中国海洋湖沼学会藻类学分会换届大会暨第二十次学术讨论 2019青岛国际海洋科技展圆满落幕—奕枫仪器应邀参展 2019青岛国际海洋科技展圆满落幕—奕枫仪器应邀参展 奕枫仪器发布手持式船载水面之上法光谱测量系统 奕枫仪器仪器租赁业务正式启动 奕枫仪器受邀参加“第三届全国海洋光学高峰论坛” 奕枫仪器应邀再次访问欧洲仪器生产商 奕枫仪器在18届水色遥感大会发布新产品剖面光谱仪 奕枫仪器应邀参加第三届生物气溶胶国际研讨会 奕枫仪器研发的首款剖面光谱仪海试成功 美国WETLabs公司总裁CASEY MOORE先生到访奕枫仪器 奕枫仪器访问英国AQUAread公司 切尔西科技集团对奕枫仪器进行友好访问 切尔西科技集团对奕枫仪器进行友好访问 奕枫仪器应邀赴英国参加Ocean Business 2015及AQE 2015 奕枫仪器应邀赴英国参加Ocean Business 2015及AQE 2015 德国TriOS创新性将紫外LED技术用于监测COD BOD TOC 德国TriOS创新性将紫外LED技术用于监测COD BOD TOC 奕枫仪器应邀访问德国TriOS公司并正式签署代理协议 奕枫仪器应邀访问德国TriOS公司并正式签署代理协议 CTG FastOcean FRRf 在藻类初级生产力领域的又一个伟大的一年 CTG FastOcean FRRf 在藻类初级生产力领域的又一个伟大的一年 德国TriOS公司销售总裁Mr. Uwe Voith到访奕枫仪器 德国TriOS公司销售总裁Mr. Uwe Voith到访奕枫仪器 德国TriOS公司销售总裁Mr. Uwe Voith到访奕枫仪器 CTG FastOcean FRRf 在藻类初级生产力领域的又一个伟大的一年 enviroFlu-BT单环芳香烃类传感器在德国TriOS公司问世 enviroFlu HC 水中油传感器获船级社DNV GL认证符合规范MEPC.184(59) 德国TriOS公司宣布:nanoFlu系列荧光计取代microFlu系列 奕枫仪器应邀访问德国TriOS公司并正式签署代理协议 德国TriOS创新性将紫外LED技术用于监测COD BOD TOC 奕枫仪器应邀参加2016上海国际海洋技术与工程设备展览会 第16届水色遥感研讨会交流奕枫发布原位初级生产力测量方案 奕枫仪器应邀参加第四届溢油应急国际研讨会暨展览会 奕枫仪器应邀参加2014中国环境科学学会学术年会产品推介会 奕枫仪器从2014中国环博会IE expo凯旋归来 奕枫仪器应邀参展Oceanology International China 2013 奕枫仪器参加中国环博会IE expo 2013 CTG最新压载水监测仪参展美国第三届压载水管理峰会 FastOcean研究光合作用在海洋环境中的作用 澳大利亚科学家使用FastOcean系统监测近岸海洋“健康”